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however, at 2–3 months following surgery the incidence 
is approximately 40%, dropping to approximately 25% 
at 1 year [3]. Early cognitive loss, once thought to be 
transient, has now been demonstrated in longitudinal 
studies to persist for up to 5 years after cardiac surgery, 
where the incidence has been reported to be over 40%. 
Whereas these neurocognitive injuries are less devastat-
ing than stroke, the fact that the incidence is 20-fold 
greater than stroke makes these injuries far more sig-
nifi cant in terms of their impact on quality of life and 
overall healthcare resources utilization.

The precise etiology of cardiac surgery-associated 
cerebral injury remains incompletely understood. Cere-
bral microembolization, hypoperfusion, infl ammation 
(both cerebral as well as systemic), cerebral edema, 
blood-brain barrier dysfunction, and hyperthermia, as 
well as a genetic susceptibility to injury or genetic in-
ability to repair following injury, have all been impli-
cated [4]. Embolization of particulate and gaseous 
material into the cerebral microvasculature, resulting in 
focal areas of cerebral ischemia, has been most well 
studied [5,6]. However, embolization is not the only 
means by which the brain can become ischemic. Due to 
the disordered nature of nonpulsatile cardiopulmonary 
bypass (CPB), global cerebral hypoperfusion may result 
[7]. These etiologies support ischemia and its sequelae 
to be important pathophysiologic events. However, a 
number of other events do occur in the setting of car-
diac surgery that may not rely directly on initiating a 
cerebral ischemic cascade. Cerebral as well as systemic 
infl ammatory effects can be induced during CPB, lead-
ing to injury, both directly and indirectly, to brain cells 
[8,9]. In addition, cerebral edema documented by mag-
netic resonance imaging (MRI) scanning in the post-
operative period has also been demonstrated [10]. The 
intraoperative period, which has been the focus of most 
interventional trials during cardiac surgery, is not the 
only time period at which injury can occur, however. 
A hyperthermic response in the early postoperative 

Abstract
Cerebral injury following cardiac surgery continues to be a 
signifi cant source of morbidity and mortality after cardiac 
surgery. A spectrum of injuries ranging from subtle neurocog-
nitive dysfunction to fatal strokes are caused by a complex 
series of multifactorial mechanisms. Protecting the brain from 
these injuries has focused on intervening on each of the 
various etiologic factors. Although numerous studies have 
focused on a pharmacologic solution, more success has been 
found with nonpharmacologic strategies, including optimal 
temperature management and reducing emboli generation.
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Introduction

Although substantial progress has been made in recent 
decades, cerebral injury remains a continuing source of 
morbidity and mortality in cardiac surgical patients. 
Advances have allowed cardiac surgery to be performed 
on a progressively older and sicker population. Indeed, 
it is this older, sicker population that is at particular risk 
for cerebral injury during cardiac surgery [1].

The incidence of cerebral injury spans a spectrum 
from cognitive loss to overt stroke and varies consider-
ably depending upon the type of injury, as well as the 
risk status of the patient. The overall stroke rate in the 
analysis of large cohorts is approximately 2% [2]. Far 
more common than stroke, however, is cognitive dys-
function. This too has a variable incidence, depending 
upon the time period at which cognitive function is as-
sessed. In the early postoperative period (days after 
surgery), the incidence ranges as high as 80%–90%; 
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period following cardiac surgery occurs and has been 
associated with cognitive decline 6 weeks following car-
diac surgery [11]. It is unclear, however, whether this 
hyperthermia is directly responsible for the cognitive 
decline, or is a result of processes that resulted in the 
cerebral injury itself, such as injury to hypothalamic 
thermoregulatory areas.

There is wide variation in the susceptibility to cardiac 
surgery-associated cerebral injury, as well as variability 
in the recoverability after these injuries. This variability 
is, in part, due to the genetic differences among patients. 
The apolipoprotein genotype (APOE) was one of the 
fi rst genetic variants linked to cognitive decline after 
cardiac surgery [12]. It has also been shown to be a fac-
tor affecting injury phenotype following a number of 
other types of cerebral injury [13,14]. This genetic vari-
ability likely affects both the susceptibility to injury as 
well as the ability to recover following injury. It is, how-
ever, only one of potentially hundreds of variants that 
may play a role, which has recently raised doubt as to 
the signifi cance of its individual effect [15]. More re-
cently, the impact of APOE has been questioned, with 
the overall impression that it has only a minor if any 
impact on cognition post-CPB. In the most current 
studies, genotypes involving infl ammation have been 
implicated in both post-cardiac surgery stroke [16] and 
cognitive loss [17].

Neuroprotective strategies

Both nonpharmacologic and pharmacologic approaches 
have been used to reduce cerebral injury after cardiac 
surgery [18]. The nonpharmacologic strategies largely 
have centered on minimizing emboli generation (reduc-
ing cerebral embolization through arterial fi ltration, 
avoidance of aortic atheroma, and optimizing pH man-
agement), as well as modulating perioperative tempera-
ture. Further technological advances have now become 
available and show promise in this area, including the 
use of specially designed aortic cannulae and epiaortic 
imaging, both designed to further minimize emboli 
generation.

Pharmacologic neuroprotective strategies have fo-
cused upon targeting individual pathways of the isch-
emic cascade which is activated in the brain during and 
after ischemia. Although dozens of different agents 
have been investigated in cardiac surgery, none have 
proven suffi ciently effi cacious to warrant widespread 
clinical application.

Pharmacologic neuroprotection

The ischemic cascade represents a convenient matrix 
for identifying and discussing drugs that have been 

studied in cardiac surgery. There are hundreds of dif-
ferent targets (ion channels, receptors, etc.) to which 
modulating drugs have been developed. Multiplying 
this by the number of compounds directed at each tar-
get makes choosing which is the optimal drug to study 
in this setting a very diffi cult problem. Areas that show 
some promise relate to the unique situation of CPB and 
its inherent infl ammatory processes. Preliminary gene 
expression work by others [19] and ourselves further 
suggests that infl ammatory and possibly apoptotic path-
ways should be investigated [20].

Excitotoxicity, modulated through the N-methyl-d-
aspartate (NMDA) receptor-mediated pathways, has 
received much attention in the fi eld of neuroprotection. 
Although human stroke trials of NMDA antagonists 
have been limited by distressing side effects, there is a 
wealth of animal data that suggests that these NMDA 
receptor antagonists are robust neuroprotective agents, 
including data from experimental CPB [21,22]. Rema-
cemide, a noncompetitive NMDA antagonist, has been 
evaluated for neuroprotection during coronary artery 
bypass grafting (CABG) surgery [23]. In a clinical study 
by Arrowsmith et al. [23], remacemide was given orally 
for 4 days prior to CABG. Although, when one exam-
ines the data for the presence or absence of a neuro-
cognitive defi cit, there appeared to be no difference 
between groups (P = 0.6), examination of the Z scores 
(a measure of learning ability) showed there was a ben-
efi cial effect in the patients who received remacemide 
(P = 0.028). This was the fi rst adequately powered study 
of a neuroprotective agent in the setting of cardiac sur-
gery that demonstrated a benefi cial effect. However, 
due to the length of time that it took to perform this 
single-center trial, the initial nonbenefi cial preliminary 
results, as well as the prolonged period of data analysis 
and review for publication, this drug was not further 
pursued for this indication.

The excitotoxic theory has spawned a clinical trial 
focusing on a historically well-tolerated NMDA 
blocker, magnesium. However, what is most interesting 
about Mg+2 is its ability to affect other pathways as well, 
potentially involving infl ammatory processes. Clinical 
cardiac surgical trials of this drug are currently under-
way; however, preliminary data have been published by 
at least one other research group, identifying it as a po-
tentially important drug for the prevention of neuro-
logic complications of cardiac surgery [24]. Experimental 
evidence for the benefi t of magnesium has not been well 
delineated; however, another NMDA receptor blocker 
has proven to be of benefi t in experimental cerebral 
ischemia, but, importantly, also in experimental models 
of CPB-associated cognitive decline. Xenon gas, which 
has long been known to possess anesthetic properties 
[25], which are also thought to be related to antagonism 
at the excitatory NMDA receptor, has recently been 
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demonstrated to possess neuroprotective properties 
[26]. This has been demonstrated in the setting of cere-
bral ischemia, but most intriguingly, in the setting of 
animal CPB [21]. These positive experimental results 
have led to early-phase clinical trials ultimately aimed 
at protecting the brain [27].

The neuroprotective effects of S(+)-ketamine, a fre-
quently used anesthetic that is also an NMDA-receptor 
antagonist, were also evaluated in a small (n = 106) 
study in cardiac surgery patients [28]. The incidence 
of neurocognitive dysfunction 10 weeks after surgery 
trended towards being lower in the ketamine group 
(20%, ketamine vs 25%, controls; P = 0.54), but, as the 
study was underpowered, it was not a signifi cant change. 
There are no other published trials evaluating ketamine 
for neuroprotection in this setting.

Intravenous lidocaine, due to its properties as a 
sodium channel-blocking agent, along with potential 
anti-infl ammatory effects, has been investigated as a 
neuroprotectant in several cardiac surgical trials. In 
one study of 55 patients undergoing valvular surgery, a 
lidocaine infusion (in an anti-arrhythmic dose of 
1 mg·min−1) was begun pre-induction and maintained 
for 48 h following surgery [29]. Neurocognitive testing 
was performed preoperatively, then 8 days and 2 and 6 
months postoperatively. Compared to placebo, neuro-
cognitive outcome 8 days following the surgery was sig-
nifi cantly better in the lidocaine group (P = 0.025). A 
second trial, by Wang et al. [30], also demonstrated a 
short-term benefi t of lidocaine. However, a much larger 
double-blind randomized trial in cardiac surgery failed 
to replicate the fi nding [31]. Currently, lidocaine cannot 
be recommended as a clinical neuroprotective agent in 
cardiac surgery.

The use of beta-blockers in patients with cardiac dis-
ease is almost a ubiquitous therapy. This therapy, though 
predominately directed towards the prevention of 
adverse myocardial events has, in a recent study of 
neurologic outcomes following cardiac surgery, been 
demonstrated to be associated with an improvement in 
neurologic outcome [32]. In this study of over 2000 pa-
tients, the neurologic outcomes, represented by stroke, 
transient ischemic attack, and encephalopathy were 
studied. Patients receiving beta-blocker therapy had a 
signifi cantly lower incidence of neurologic defi cit versus 
those not receiving beta-blockers. Although the reasons 
for this potential benefi t are not intuitively obvious, 
there are several potential reasons why these agents 
may be effi cacious, including modulating both cerebro-
vascular tone and CPB-related infl ammatory events. 
Recent experimental support for potential neuropro-
tective effects from beta-blockers has been seen in a 
study of carvedilol, which is known to have mixed ad-
renergic antagonist effects, as well as acting as an anti-
oxidant and inhibiting apoptosis [33].

One of the most fascinating agents that has been 
available for clinical use from the very early days of 
cardiac surgery, albeit not specifi cally used in the setting 
until recent decades, is the serine protease inhibitor, 
aprotinin. Aprotinin is a nonspecifi c serine protease in-
hibitor that was fi rst used in the 1950s for the treatment 
of pancreatitis. Its current indication in cardiac surgery 
is for the reduction of blood loss and transfusion. How-
ever, in a large multicenter trial of aprotinin in primary 
or redo CABG and valvular surgery, the group receiv-
ing high-dose aprotinin also had a lower stroke rate 
(P = 0.032) [34,35]. Similarly, Frumento et al. [36] ret-
rospectively examined patients at high risk for stroke 
(due to the presence of signifi cant aortic atheroma); 
those who received aprotinin had a signifi cantly lower 
stroke rate. In a recent small (n = 36) study examining 
the effect of aprotinin on cognitive defi cit following 
CABG surgery, the incidence of cognitive defi cit was 
also reduced in the aprotinin group (58%, aprotinin vs 
94% placebo; P = 0.01) [37]. However, the high rate in 
the placebo group, the small size of the study, and meth-
odologic concerns limit the applicability of these cogni-
tive results to broader populations [38].

There has been considerable discussion and investi-
gation as to the potential mechanism for any aprotinin-
derived neuroprotection. Initial enthusiasm focused 
upon its anti-infl ammatory effects potentially prevent-
ing some of the adverse infl ammatory sequelae of cere-
bral ischemia. Animal investigations in the setting of 
cerebral ischemia failed to show any direct benefi t on 
either functional or neurohistologic outcome following 
cerebral ischemia [39]. Indeed, aprotinin may have had 
its benefi cial effects independent of any direct neuro-
protective effect through an indirect effect of modulat-
ing cerebral emboli. Brooker et al. [40] have identifi ed 
the cardiotomy suction as a major source of cerebral 
emboli during CPB. One could extrapolate that if a drug 
reduces the amount of particulate-containing blood re-
turning from the operative fi eld to the cardiotomy res-
ervoir (by decreasing overall blood loss), then cerebral 
emboli (and the resulting neurologic consequences) 
might also be decreased.

Most recently, however, considerable question has 
been added to the aprotinin story. Mangano et al. [41], 
in a study of more than 5000 patients, have reported an 
increase in strokes in those receiving aprotinin in a ret-
rospective study that used propensity scoring to adjust 
for the higher overall risk in patients receiving apro-
tinin. The question as to aprotinin’s true effect on 
cardiac surgery-related neurologic injury will remain 
unanswered until addressed by a properly conducted 
and powered prospective randomized trial.

Other inhibitors of the infl ammatory cascade, includ-
ing complement inhibitors have begun to be investi-
gated [42]. The activation of complement is central to 
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the CPB-associated infl ammatory response [43]. In a 
small (n = 18) study using the mini-mental status exami-
nation as a simple assessment of cognitive function, 
patients receiving a complement (C5) inhibitor (h5G1.1-
scFv; pexelizumab), demonstrated fewer visuospatial 
defi cits at hospital discharge [44]. Further large-scale 
(phase III) investigations of this compound (pexelizum-
ab) have been performed to more adequately delineate 
any potential longer-term neuroprotective effects from 
this drug in this setting. Mathew et al. [44] studied pex-
elizumab in a 914-patient study aimed at evaluating 
its effect on both myocardial outcome and mortality. A 
secondary endpoint of neurocognitive outcome demon-
strated that pexelizumab, although having no effect on 
global measures of cognition, appeared to have a bene-
fi t with respect to the visuospatial domain of cognitive 
function.

Corticosteroids have long been considered as poten-
tial cerebroprotective agents, in part due to their ability 
to reduce the infl ammatory response. Infl ammation is 
considered an important factor in propagating ischemia-
mediated brain injury [45,46]. However, with the excep-
tion of spinal cord injury [47], they have never been 
demonstrated to possess any signifi cant clinical neuro-
protective properties. Furthermore, the administration 
of steroids has actually worsened cerebral outcome in a 
recent large (n = 10 000) noncardiac surgical trial. The 
CRASH trial investigating head injury demonstrated an 
increased relative risk of death (1.18 [95% confi dence 
intervals; CI, 1.09–1.27]; P = 0.0001) in those receiving 
high-dose steroids with in 8 h of injury [48,49]. Part of 
their lack of effect may be due to the hyperglycemia 
that generally follows their administration. Hyperglyce-
mia, in animal models and several human studies of 
cerebral injury, has been associated with worsened 
neurologic outcome [50,51]. The administration of 
steroids with the intent of conferring some degree of 
neuroprotection during cardiac surgery cannot be rec-
ommended based on current evidence.

Nonpharmacologic neuroprotection

Several well-defi ned areas of nonpharmacologic neuro-
protection warrant addressing. Optimal temperature 
management, aortic atheroma detection and manage-
ment, and emboli reduction strategies all hold promise 
for protecting the brain.

Temperature
A great deal of investigation has focused on the infl u-
ence of intraoperative temperature on cerebral outcome 
after cardiac surgery. Hypothermia protects in almost 
all experimental, and some clinical, paradigms of brain 
injury [52]. The mechanism by which hypothermia pro-
tects is likely multifactorial. Although hypothermia has 

a measurable effect on suppressing cerebral metabolism 
(approximately 6%–7% decline per °C) [53], it is likely 
that its other neuroprotective effect(s) may be mediated 
by nonmetabolic actions. In the ischemic brain, for ex-
ample, moderate hypothermia has multimodal effects, 
including blocking the release of glutamate [54], reduc-
ing calcium infl ux [55], hastening recovery of protein 
synthesis [56], diminishing membrane-bound protein 
kinase C activity [57], slowing of the time to onset of 
ischemia depolarization [58], reducing the formation 
of reactive oxygen species [59], and suppressing nitric 
oxide synthase activity [60].

Some of the most meaningful data on CPB tempera-
ture and cerebral outcome came from work that had its 
origins in the late 1980s and early 1990s. It was at that 
time that the judicious use of warm CPB was under-
taken because of its putative myocardial salvaging ef-
fects when used with continuous warm cardioplegia 
[61–64]. However, because CPB was being carried out 
at higher temperatures than what were considered 
conventional, the implications on the brain were also 
studied. Several large studies were undertaken in order 
to elucidate the effects of temperature management on 
cerebral outcome after cardiac surgery. The Warm 
Heart Investigators trial [61], a second trial performed 
at Emory University [65], and a later trial at Duke 
University [66], although having several methodological 
differences, had very similar results with respect to neu-
rocognitive outcome [67,68], but some very divergent 
results in terms of stroke. In short, none of the studies 
demonstrated any neuroprotective effect of hypother-
mia on neurocognitive outcome after cardiac surgery. 
What the Emory trial did demonstrate, however, was 
an apparent injurious effect (as manifested by a worse 
stroke outcome) of what was most likely mild degrees 
of hyperthermia during CPB. Neither the Warm Heart 
Investigators trial nor the Duke trial showed any effect 
of temperature on stroke per se. These data suggested 
that active warming to maintain temperatures at (or 
greater) than 37°C may pose an unnecessary risk of 
stroke.

Just as hypothermia has some likely protective effects 
on the brain, hyperthermia, in an opposite and dispro-
portionate fashion, has some injurious effects. Although 
the studies referred to previously [61,65,66] demon-
strated no neuroprotective effect, there is emerging 
evidence that if some degree of neuroprotection is af-
forded by hypothermia, it may be negated by the obliga-
tory rewarming period that must ensue [69]. Indeed, 
Grigore et al. [69] demonstrated that, when compared 
to conventional faster rewarming, slower rewarming 
resulted in a lower incidence of neurocognitive dysfunc-
tion 6 weeks after cardiac surgery. These slower re-
warming rates led to lower peak cerebral temperatures 
during rewarming, consistent with past observations 
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that rapid rewarming can lead to an overshoot in cere-
bral temperature, resulting in inadvertent cerebral hy-
perthermia [70]. By reducing this rewarming rate, one 
reduces the overshoot in temperature and may prevent 
the negative effects of cerebral hyperthermia. Consis-
tent with the concept that preventing some of the re-
warming may be protective was a study by Nathan et al. 
[71] that demonstrated a neurocognitive benefi t for pa-
tients who were maintained between 34°C and 36°C for 
a prolonged (12-h) period postoperatively. That trial 
may have had its benefi cial effect via the avoidance of 
cerebral hyperthermia during rewarming, rather than 
via the prolonged hypothermia [71].

The postoperative period is a relatively understudied 
time period with respect to temperature management 
and cerebral injury in cardiac surgery patients. We have 
recently demonstrated that hyperthermia commonly 
occurs during the fi rst 24 h after CABG and that there 
is a direct relationship between postoperative fever and 
cognitive loss at 6 weeks after surgery [11]. The postop-
erative period therefore represents an important time 
period in which to intervene with a potential (albeit as 
yet unproven) strategy of preventing post-CABG fever 
and subsequent cognitive loss.

pH management
Alpha-stat is the most often utilized blood gas 
management convention for adult CPB. Alpha-stat 
management maintains normal cerebral blood fl ow 
(CBF) autoregulation with the coupling of cerebral 
metabolism (CMRO2) to CBF, allowing for adequate 
oxygen delivery while minimizing the potential for 
emboli. Studies by Murkin [72] and Newman et al. [73] 
have outlined signifi cant neurocognitive advantages of 
alpha-stat over pH-stat management. During pH stat 
management (where CO2 is added to the fresh oxygen-
ator gas fl ow), a higher than needed for the brain’s 
metabolic requirements CBF results. This luxury perfu-
sion risks excessive delivery of emboli to the brain. 
Except for congenital heart surgery, where the majority 
of recent outcome data support the utilization of 
pH-stat management91,92 (due to its ability to maintain 
brain cooling homogeneity prior to circulating arrest), 
adult outcome data support the use of alpha-stat pH 
management.

Emboli reduction
With convincing evidence that patients are likely ex-
posed to thousands of cerebral emboli during surgery 
and that this embolic shower is associated with cerebral 
injury [6], numerous strategies have been proposed to 
reduce this damaging embolic load. There are multiple 
sources of emboli, both particulate and gaseous, during 
the normal conduct of cardiac surgery. The CPB circuit 
itself contributes to this load through the generation of 

particulate emboli, in the form of platelet-fi brin aggre-
gates and other debris produced within the circuit itself. 
Gaseous emboli can be created, or augmented if already 
present, in the circuit due to factors such as turbulence-
related cavitation, and vacuum-assisted venous drain-
age contributing to this gaseous emboli process [74]. 
The intrinsic ability of the circuit to allow air entrained 
from the venous return cannula to pass through the oxy-
genator itself varies considerably between manufactur-
ers but remains a signifi cant source for air in the circuit. 
As signifi cant quantities of air can be entrained into the 
heart itself from the surgical fi eld, fl ooding the fi eld with 
CO2 has been touted as being effective in reducing this 
emboli source [75]. Its ability to specifi cally reduce ce-
rebral injury has not been well studied.

Blood that is returned to the venous reservoir from 
the surgical fi eld though the use of the cardiotomy suc-
tion may signifi cantly contribute to the particulate load 
in the CPB circuit. This has been demonstrated to sig-
nifi cantly increase the cerebral emboli load [40]. The 
use of blood salvage devices (i.e., cell-saver) to process 
the blood prior to returning it to the venous reservoir 
may minimize the amount of particulate/lipid-laden ma-
terial, which likely originates from the sternotomy itself, 
that is available for embolization. Most of this material 
is likely either small enough in size or so signifi cantly 
deformable that it can pass through standard arterial 
line fi lters. Although small preliminary studies have 
proven that there may be a potential benefi t to the use 
of the cell saver [76], one must balance the ability of the 
cell-saver to decrease the amount of particulate matter 
getting into the circuit with its side effects, if used exces-
sively, of reducing both platelet and coagulation factors 
through its intrinsic washing processes. The right bal-
ance likely lies in using the cell-saver up to a certain, as 
yet undefi ned, volume of processed blood and then re-
turning to using the cardiotomy return. This area has 
not been studied with respect to cognitive outcome, but 
studies are underway.

Pulsatile perfusion
Nonpulsatile CPB is the most commonly practiced form 
of artifi cial perfusion and has been examined in several 
studies. Although inherently nonphysiologic, there is a 
paucity of data to suggest that pulsatile fl ow during 
clinical CPB is benefi cial compared to nonpulsatile by-
pass. In a study (n = 316) by Murkin [72], the effect of 
pulsatile versus nonpulsatile CPB on neurologic and 
neuropsychologic outcomes was examined, but demon-
strated no signifi cant differences in outcome.87 How-
ever, a signifi cant limitation to most pulsatility studies 
is that true “physiologic” pulsatility is almost never 
accomplished. Instead, variations of sinusoidal pulse 
waveforms are produced that clearly do not match the 
hydrodynamics of normal physiologic pulsation.
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Although there is hope that newer pulsatile technolo-
gies, better reproducing normal biologic pulsatility, may 
have some benefi t,89 the majority of studies to date do 
not present enough convincing evidence to suggest that 
routine pulsatile fl ow during CPB is warranted.

Atheroma management
The aorta itself is a signifi cant source of injurious em-
bolic material, largely represented by atheromatous 
aortic debris that can embolize to various vascular beds, 
including the brain. There are multiple techniques that 
can be used to minimize atheromatous material being 
liberated from the aortic wall and embolizing into the 
cerebral circulation. These range from optimizing the 
placement of the aortic cannula in an area relatively 
devoid of plaque [77] to the use of specialized cannulae 
that cause less “sandblasting” of the aortic wall. The use 
of transesophageal echocardiography (TEE) and epi-
aortic scanning has allowed for the “knowledgeable 
avoidance” of the atheromatous ascending aorta, with 
respect to cannulation, clamping, and proximal vein 
graft anastomosis placement [77]. Alternative aortic 
cannulae and the use of different locations possess the 
ability to decrease the embolization of atheromatous 
plaque. The avoidance of partial-occlusion clamping for 
proximal anastomosis, using single-step automated 
anastomotic devices, and the use of alternatives to 
cross-clamping all possess the ability to mitigate injury 
due to embolization. Hammon et al. [78] have recently 
demonstrated that avoiding manipulation of the aorta 
by using only a single clamp application can signifi cantly 
reduce postoperative cognitive loss. In addition, special-
ized cannulae that contain fi ltering technologies and 
other means to defl ect emboli to more distal sites have 
been developed and are being studied [79]. Optimizing 
the management of the atheromatous aorta will see 
further development in future years.

Glycemic control
Hyperglycemia is a common occurrence during the con-
duct of CPB. In addition to the exogenous administra-
tion of glucose-containing solutions (dextrose-containing 
cardioplegia and pump prime) [80] and the stress re-
sponse to surgery and CPB, marked by signifi cant in-
creases in circulating catecholamines (epinephrine and 
norepinephrine) and cortisol [81,82], hypothermia-
induced insulin resistance is common. All of these 
result in signifi cant peripheral insulin resistance and 
marked increases in glycemic conditions [83–85]. 
Hyperglycemia, variably defi ned as a serum glucose 
of more than 180–200 mg·dl−1 (approximately >
11 mmol·l−1) occurs in as many as 75% of patients. Pa-
tients with pre-existing diabetes mellitus have an even 
higher incidence [86].

Multiple investigations have examined the adverse 
sequelae (such as perioperative infection [87,88]) asso-
ciated with hyperglycemia during cardiac surgery. There 
is emerging clinical and experimental evidence implicat-
ing hyperglycemia with various immunomodulatory ef-
fects, particularly in those patients with critical illness 
[89,90]. In particular, hyperglycemia has been demon-
strated to reduce white blood-cell function, most nota-
bly that of macrophages and neutrophils [91]. In addition 
to its immunomodulatory effects, hyperglycemia, be-
cause of its osmotic effects, also has an impact on the 
kidney, acting as a potent osmotic diuretic. However, 
little work has focused on its potential impact on longer-
term renal impairment, which has been demonstrated 
in certain subsets of patients after cardiac surgery 
[92,93].

With respect to neurologic outcome, multiple 
studies outside the cardiac surgical setting have de-
monstrated relationships between hyperglycemia and 
worse outcome after cerebral injury [94–96]. Experi-
mentally, there are considerable data confi rming the 
link between hyperglycemia and adverse cerebral out-
come after stroke [49,51,97,98]. The potential mecha-
nisms for hyperglycemia’s association with adverse 
neurologic outcome are several-fold. Firstly, higher 
glucose levels lead to a higher degree of substrate 
availability for the production of lactate during the 
anaerobic metabolism that is consequent on cerebral 
ischemia [99–101]. The resulting intracellular acidosis 
then interferes with glycolysis, protein synthesis, ho-
meostasis, enzyme function, and other critical intracel-
lular processes [101–103]. In addition, hyperglycemia 
has been shown to increase the release of excitotoxic 
amino acids (glutamate and aspartate) during cerebral 
ischemia. The release of these amino acids is a key me-
diator in the ischemic cascade; the presence of hyper-
glycemia augments this injurious response [104,105]. 
Furthermore, there is potentially some evidence sug-
gesting that the presence of hyperglycemia itself may 
enhance the infl ammatory response [106]. As it is al-
ready known that CPB has a much enhanced infl amma-
tory response [43,107], and that infl ammation may 
mediate several adverse outcomes, including cerebral 
ones, the additional hyperglycemia-mediated infl amma-
tion may cause further injury. With the cerebral isch-
emia that has the potential to occur during cardiac 
surgery, this may be one potential mechanism that ex-
plains why an adverse cerebral outcome would be ex-
pected to be linked with hyperglycemia during cardiac 
surgery.

The link between hyperglycemia and adverse neuro-
logic outcome is not clear, however [108]. Most studies 
have been small and underpowered to demonstrate 
any meaningful associations between adverse cerebral 
outcome and hyperglycemia during cardiac surgery. A 
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notable exception is a study (n = 709) of patients under-
going CABG with CPB where cognitive function was 
assessed both pre- and post operatively (6 weeks). The 
incidence of cognitive defi cit was compared between 
those with hyperglycemia versus those who were not 
hyperglycemic. The hyperglycemic patients had a cogni-
tive defi cit rate of 40%, versus 29% in the normoglyce-
mic group (odds ratio [OR], 1.85; 95% CI, 1.1–3.0; 
P = 0.0165) [86].

Attenuating the hyperglycemic response to cardiac 
surgery has proven diffi cult, with even high insulin dos-
es more often than not failing to return glucose levels 
to normal during surgery. In a study by Chaney et al. 
[109], not only was normoglycemia diffi cult to attain 
during cardiac surgery, but with the high insulin doses 
administered during surgery, the incidence of hypogly-
cemia in the post-bypass period was excessive. In addi-
tion, excessive insulin can also result in hypokalemia, 
due to its enhancement of potassium transmembrane 
transport mechanisms. The most recent data examining 
the ability of reducing hyperglycemia in order to de-
crease the incidence of neurologic injury was published 
by Butterworth et al. [110]. This study did not de-
monstrate any benefi cial effect of insulin therapy on 
neurologic and neurobehavioral outcome, but signifi -
cant hyperglycemia remained in both their cohorts, 
proving once again how diffi cult precise glycemic 
control is with current glucose monitoring and insulin 
therapy strategies.

Off-pump cardiac surgery
Although it is logical to assume that the elimination of 
the CPB apparatus with off-pump coronary bypass sur-
gery (OPCAB) would reduce some of the cerebral in-
jury associated with cardiac surgery, it is unlikely that it 
will eliminate these injuries altogether, particularly as 
cognitive dysfunction has still been documented in 
OPCAB patients. The largest trial comparing OPCAB 
to conventional on-pump CABG surgery failed to dem-
onstrate a decrease in neurocognitive decline at 1 year 
after surgery [111]. The reasons for this are unclear, but 
may be partly explained by the complex pathophysiol-
ogy involved. For example, if infl ammatory processes 
play a role in mediating cardiac surgery-related brain 
injury, then OPCAB, with its continued use of sternot-
omy, heparin administration [112], and wide hemody-
namic swings, may be a signifi cant reason as to why 
cognitive dysfunction is still seen. In addition, tradi-
tional embolic theories are still valid, as ascending 
aortic manipulation, with its ensuing particulate 
embolization, is still commonly used. In addition, sig-
nifi cant hemodynamic compromise, due to manipula-
tion of the heart, can lead to hypotension that has been 
associated with signifi cant jugular venous desaturation 
[113]. This type of desaturation was demonstrated by 

Croughwell et al. [114] to be associated with cognitive 
decline.

Large prospective studies will help in both determin-
ing if off-pump procedures will have lower neurologic 
complications, but also in regard to which patient popu-
lation this procedure should be optimally targeted. For 
example, is the patient who is at high risk for neurologic 
injury the best choice for OPCAB, where a compromise 
of potentially incomplete adequate revascularization 
may be made in order to prevent debilitating stroke? 
Or, conversely, should OPCAB be performed in a 
younger patient, in whom the risk of neurologic compli-
cations is lower, but who would have the most to gain 
from the longest possible patency (probably from con-
ventional CABG)? Understanding the balance between 
optimizing neurologic outcome and coronary outcome 
is critical, and this is the focus of several recent studies. 
Al-Ruzzeh et al. [115] have re-examined the issue of 
potential OPCAB benefi ts in a more recent study 
(n = 168) that better controlled for some of the aortic 
manipulative limitations. They demonstrated better 
neurocognitive function without any compromise in 
coronary angiographic outcome in the OPCAB group. 
The precise role of OPCAB continues to be a dynamic 
area of research.
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